Introduction to numerical weather forecast

Benjamin Held (Raziel)

December 2016

< □ > < @ > < 글 > < 글 > 로 ▷ 코 □ ♡ < ♡ 1/32

2 Numeric models

3 "Weather as a service"

4 Visual results

5 Conclusion

Observation

Historic weather forecast through observations

- Development of weather lore (Bauernregeln)
- "100-jähriger Kalender"
 - Weather record of a salesment over a period of 7 years
 - Selection of the title for better sellings

Measuring instruments

Development of the thermometer and barometers by Torricelli in 1643

Measuring instruments

Development of the thermometer and barometers by Torricelli in 1643

Measuring instruments

Development of the thermometer and barometers by Torricelli in 1643

Development

- around 1650: Establishment of the first meteo. network
- 1780: Foundation of the "Societas Meteorologica Palatina" by elector Karl Theodor of Mannheim
- around 1840: Telegraphy allows faster data transfer of meteorological data

[4]

- Nov. 1854: Storm destroys the majority of the osmanian-france fleet during the Krim crisis
 - Analysis of observation data showed that the fleet could have been saved if the information had been forwarded
- 1913: Approach of spatial-temporal rasterization of the atmosphere by V. Bjerknes

Development

- 1921: Numerical forecast by L. F. Richardson
 - Access to detailed 3D-dataset from the International Meteorological Organization in 1910
 - Manual calculation of the physical equations
- 1950: First successful numerical forecast from Charney, Fjörtoft and von Neumann

Development

- 1921: Numerical forecast by L. F. Richardson
 - Access to detailed 3D-dataset from the International Meteorological Organization in 1910
 - Manual calculation of the physical equations
- 1950: First successful numerical forecast from Charney, Fjörtoft and von Neumann
 - \Rightarrow Confirmation of Richardsons results

[4]

- 3 "Weather as a service"
- 4 Visual results

Numerical grid

Separation of the forecast region by a three-dimensional numerical grid

[7], [1]

Numerical grid

Separation of the forecast region by a three-dimensional numerical grid

[7], [1]

Input data

[2]

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ = のへで 11/32

Input data

12/32

Starting conditions

- Land use: e.g. city, water, field, forest
- Ground-near wind profile: logarithmic function
- Large-scale wind speed: different direction
- Meteorological data for the starting point from models greater grid resolution
 - Temperature
 - Pressure
 - Wind direction and speed
 - Humidity

Usage of starting conditions

<ロト < 部ト < 目ト < 目ト < 目 > つへで 14/32

Local models

Nesting of models for local forecast with various starting values [5]

Local models

Nesting of models for local forecast with various starting values [5]

Local models

Nesting of models for local forecast with various starting values [5]

Local models

Nesting of models for local forecast with various starting values [5]

15 / 32

2 Numeric models

3 "Weather as a service"

4 Visual results

5 Conclusion

- German Weather Service (DWD, Offenbach)
 - Warnings, Forecasts, Analysis of ground measurements
 - Special data or complete datasets for a fee
 - Global (ICON) and local model (COSMO) [1]
- National Oceanic and Atmospheric Administration (NOAA)
 - govermental, freely available
 - GFS: Global Forecast System (NOAA), z.B. 0.5°× 0.5°[6]
 - WRF: Weather Research & Forecast Model, km-resolution [3]
- MetOffice: UK weather service
 - similar range as NOAA

- German Weather Service (DWD, Offenbach)
 - Warnings, Forecasts, Analysis of ground measurements
 - Special data or complete datasets for a fee
 - Global (ICON) and local model (COSMO) [1]
- National Oceanic and Atmospheric Administration (NOAA)
 - govermental, freely available
 - GFS: Global Forecast System (NOAA), z.B. $0.5^{\circ}x \ 0.5^{\circ}[6]$
 - WRF: Weather Research & Forecast Model, km-resolution [3]
- MetOffice: UK weather service
 - similar range as NOAA

- German Weather Service (DWD, Offenbach)
 - Warnings, Forecasts, Analysis of ground measurements
 - Special data or complete datasets for a fee
 - Global (ICON) and local model (COSMO) [1]
- National Oceanic and Atmospheric Administration (NOAA)
 - govermental, freely available
 - GFS: Global Forecast System (NOAA), z.B. $0.5^{\circ} \times 0.5^{\circ}$ [6]
 - WRF: Weather Research & Forecast Model, km-resolution [3]
- MetOffice: UK weather service
 - similar range as NOAA

- European Center for medium-range weather forecasts (ECMWF)
 - based in Reading, UK, but supported by 34 states
 - Weather forecasts, season forecasts, ensemble forecasts
 - IFS: Integrated Forecast System, every 12 h; forecasts up to 10 days [2]
- Many private provider
 - MeteoMedia, WetterOnline, ...
 - Online platforms, basic offer with membership options
 - Only several provider run their own models, most of them visualize existing forecast data

- European Center for medium-range weather forecasts (ECMWF)
 - based in Reading, UK, but supported by 34 states
 - Weather forecasts, season forecasts, ensemble forecasts
 - IFS: Integrated Forecast System, every 12 h; forecasts up to 10 days [2]
- Many private provider
 - MeteoMedia, WetterOnline, ...
 - Online platforms, basic offer with membership options
 - Only several provider run their own models, most of them visualize existing forecast data

2 Numeric models

3 "Weather as a service"

Meteogramm

< □ > < @ > < 클 > < 클 > 클 = ♡ Q (* 20 / 32

Medium-range ensemble-forecasts

Demo: Temperature visualization

2 Numeric models

3 "Weather as a service"

4 Visual results

- At first weather forecast as rules and observation...
- ... and through technical developments on basis of physical equations
- Weather forecast more detailed with better hardware but still no absolute accuracy
- Observation by humans still important
- Weather data / weather forecast as a service

Questions? Feedback?

< □ > < ⑦ > < ≧ > < ≧ > ミミ = 少へ(~ 25/32

German Weather Service (Deutscher Wetterdienst). www.dwd.de, 09 2016.

ECMWF.

Data Coverage - Synop, Ship, Temp. http://www.ecmwf.int/en/forecasts/charts/monitoring/dcover, 09 2016.

Bill Kuo et al.

The Weather Research & Forecasting Model (WRF). http://www.wrf-model.org/index.php, 09 2016.

Wikimedia Foundation.

Wikipedia .

https://de.wikipedia.org/wiki/, 09 2016.

Benjamin Held.

Regionalisierung von Klimamodellen. Diplomarbeit, Leibniz Universitaet Hannover, 2010.

National Oceanic and Atmospheirc Administration. Global Forecast System (GFS). https://www.ncdc.noaa.gov/data-access/model-data/modeldatasets/global-forcast-system-gfs, 09 2016.

Wetterzentrale.

Weather reports, forecasts, models. www.old.wetterzentrale.de, 10 2016.

Appendix: Basic equations Appendix: Visualization

• Die erste Gleichung ist die Erhaltungsgleichung für den Impuls, die Navier-Stokes-Gleichung.

$$\frac{\partial u_i}{\partial t} + u_k \frac{\partial u_i}{\partial x_k} = -\varepsilon_{ijk} f_j u_k - \frac{\partial \Phi}{\partial x_i} - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\mu}{\rho} \frac{\partial^2 u_i}{\partial x_k^2} \qquad (1)$$

• Als Bilanzgleichung für die potentielle Temperatur dient der Erste Hauptsatz der Thermodynamik.

$$\frac{\partial \Theta}{\partial t} + u_k \frac{\partial \Theta}{\partial x_k} = P_\Theta \tag{2}$$

• Als weitere Gleichung dient die Bilanzgleichung für die spezifische Feuchte.

$$\frac{\partial s}{\partial t} + u_k \frac{\partial s}{\partial x_k} = P_s \tag{3}$$

• Die Kontinuitätsgleichung dient als Bilanzgleichung für die Masse.

$$\frac{\partial \rho}{\partial t} + u_k \frac{\partial \rho}{\partial x_k} = -\rho \frac{\partial u_k}{\partial x_k} \tag{4}$$

Appendix: Visualization

Appendix: Visualization

Temperature visualization

Temperature visualization

Temperature visualization

